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ABSTRACT

As water infrastructure ages and repair costs increase, optimization techniques are

increasingly used for the design and operation of water networks. A key challenge

for optimization on water systems is the fast and accurate simulation of hydraulic

equations. Conventional simulation tools such as Epanet are fast but cannot perform

optimization alone and so must be coupled to an optimization engine, typically a meta-

heuristic such as a genetic algorithm. In contrast, mathematical optimization methods

take into account hydraulic equations as constraints. The energy equation for pipe flow

is a challenging constraint because it is non-linear and given by an explicit function

with a rational exponent (Hazen-Williams) or an implicit function (Colebrook-White).

This paper uses a quadratic approximation for pipe head loss that provides very good

accuracy. The approximation is applied to pose and solve a mixed integer non-linear

program (MINLP) for placing and setting pressure reducing valves. The problem is

addressed using both local and global solvers. Computational results show accuracy

comparable to Epanet and significant potential to reduce non revenue water by deploy-

ing optimal solutions.

INTRODUCTION
Water distribution networks are an essential element of urban infrastructure.

In many parts of the US and Europe, networks are over 100 years old and are
operating well beyond their design life. Because the cost of rehabilitating these
sytems is high, there is an opportunity to improve the design and operation of
water systems by applying optimization techniques.

Techniques for water network simulation are well developed and widely imple-
mented. The simulation problem is to find the flow and pressure distribution on a
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network of known design (e.g. pipe topology and size) and known operating plan
(e.g. valve settings and pump schedules). One popular tool for network simula-
tion is EPANET (Rossman 2000). In contrast, a network optimization problem
is to make the best decision regarding design or operation with respect to some
objective and subject to some constraints.

Optimization approaches fall into two broad classes: (1) meta-heuristics, and;
(2) mathematical optimization. Meta-heuristics, such as genetic algorithms, im-
prove an objective value by testing variants to a known solution. The method for
developing variants is usually inspired by a natural process such as evolution or
annealing. The general idea is to couple the meta-heuristic to a hydraulic simu-
lation code such as EPANET (c.f. Nicolini and Zovatto (2009)). Meta-heuristics
have been widely used to optimize water systems and are popular in part because
the optimization technique is independent of the hydraulic simulator. However,
the methods have a downside in that solutions are not provably optimal. A user
knows that the solution is the best one found, but not necessarily the best one
available. And, meta-heuristics may require simulation runs for large numbers of
solution variants.

In contrast, a mathematical optimization approach uses the hydraulic equa-
tions in the problem formulation and, depending on the method, gives assurance
that a solution is locally or globally optimal. Mathematical optimization methods
for water networks have not received as much study as meta-heuristic approaches.
Collins et al. (1978) provide the first mention of mathematical optimization meth-
ods for water networks. Berghout and Kuczera (1997) use optimization methods
to show that many network simulation problems have a unique solution. The par-
ticular problem of valve placement by math optimizaiton is mentioned by Hindi
and Hamam (1991). More recently, Sherali and Smith (1997) and Bragalli et al.
(2011) on use mathematical optimization to select optimal pipe sizes for water
networks.

This paper aims to advance the practice of optimization for water networks
by:

• reporting new pressure optimization results for a literature network; and,
• exploring some global optimization techniques for these problems.

PROBLEM FORMULATION
The problem considered here is optimal placement and setting of pressure

reducing valves (PRVs) in a water distribution network. The placement problem
addresses a design question: where to put the valves. The setting problem address
the question of how to operate valves once their location is known. The problems
are closely related because the placement problem must also solve the setting
problem.

To solve the problems, a water distribution system with Nn nodes and Np

pipes is modeled as a directed graph having Nn nodes and 2Np edges. The ith

node has an elevation ei, demand di, and hydraulic head hi. Edges are identified
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by a source and target node and contain quantities of flow rate Qi,j and frictional
head loss hf (Q)i,j. A binary valve indicator vi,j is also present for each link from
a node i to a node j.

The chosen objective is to minimize the sum of nodal pressures (Eq. 1) with
the overall aim of reducing pressure driven leakage in the system. The mini-
mization is subject to the constraints of mass conservation (Eq. 2) and energy
conservation (Eqs. 3 and 4). Additional constraints include box constraints for
the flows (Eq. 5), the desired minimum pressure (Eq. 6), a requirement that only
one valve may fall per pipe (Eq. 7), and a total number Nv of PRVs to place (Eq.
8).

minimize
∑

pi (1)

s.t.
∑
k

Qk,i −
∑
l

Qi,l = di (2)

Qi,j(pi + ei − pj − ej − hf (Q)i,j) ≥ 0 (3)

pi + ei − pj − ej − hf (Q)i,j −Mvi,j ≤ 0 (4)

0 ≤ Qi,j ≤ Qmax (5)

pmin ≤ pi ≤ pmax (6)

vi,j + vj,i ≤ 1 (7)∑
(i,j)∈E

vi,j ≤ Nv (8)

vi,j ∈ {0, 1} (9)

Since hf is a nonlinear function in Q, c.f. below, we denote the mixed-integer
nonlinear optimization problem (1) - (8) as VP-MINLP, which involves both,
binary and continuous decisions. Its solution is an optimal placement for Nv PRVs
and the optimal setting for these PRVs, which we identify with the pressure at
the outlet node of a PRV. The problem of optimally setting a number of given
PRVs in a water network is a subproblem of VP-MINLP which is obtained by
assigning fixed binary values to the variables vi,j. This setting problem is denoted
as VS-NLP since it involves only continuous decisions: the PRV outlet pressures.

Quadratic Approximation

To facilitate formulation as a polynomial optimization problem, friction loss
along each link in the network is modeled as a quadratic function, hf = aQ2+bQ.
For networks using the Hazen-Williams friction formula, the coefficients a and b
that minimize the relative error over a given flow range may be computed using
formulae from Eck and Mevissen (2012):
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a =
C − bA
B

(10)

b =
AC
DB
− E

D

1 + A2

DB

(11)

where

A =
Q0.3

2 −Q0.3
1

0.3α2
(12)

B =
Q1.3

2 −Q1.3
1

1.3α2
(13)

C =
Q1.15

2 −Q1.15
1

1.15α
(14)

D =
Q−0.72 −Q−0.71

0.7α2
(15)

E =
Q0.15

2 −Q0.15
1

0.15α
(16)

In these equations, the approximation interval is [Q1, Q2] and α is the part
of the Hazen-Williams formula that does not vary with flow so that the Hazen-
Williams formula may be written as hf = αQ1.85. Thus α = 10.65C−1.852D−4.871L
where C is the pipe roughness, D is the pipe diameter in meters, and L is the
pipe length, also in meters. Further details on the development of the quadratic
are described in the reference.

METHODS
The methods described here assume a quadratic model for headloss hf as de-

scribed above and derived by Eck and Mevissen (2012). Due the constraints Eqs.
(3) - (4), both VP-MINLP and VS-NLP are nonconvex optimization problems.
Moreover they are polynomial optimization problems (POP) since Eq. (3) is a
polynomial inequality constraint of degree three, Eq. (4) is quadratic, and the
objective and all other constraints linear. A polynomial optimization problem
has equality and inequality constraints and objective function as multi-variate
polynomials in the decision variables. The problem VP-MINLP is of dimension
Nn + 4Np and VS-NLP is of dimension Nn + 2Np.

Local Optimization

For a local solver the Branch & Bound algorithm of Bonmin (2011) and the
interior point method of IPOPT (2011) are used to solve VP-MINLP and VS-
NLP. Since VP-MINLP and VS-NLP are non-convex, Bonmin and IPOPT are
guaranteed to find locally optimal solutions only.
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Global Optimization

Due to the scale of water networks of interest in practice, both VP-MINLP
and VS-NLP are of challenging dimension for global solvers of non-convex opti-
mization problems. The limitations of current global solvers for design decision
problems have been discussed by Bragalli et al. (2011) and Eck and Mevissen
(2012). Recent progress for some operational decision problems has been reported
in Gleixner et al. (2012).

Since VP-MINLP and VS-NLP are polynomial optimization problems of de-
gree three we take advantage of the hierarchy of semidefinite programming (SDP)
relaxations pioneered in Lasserre (2001), in order to (a) derive global lower bounds
for the optimal value of VP-MINLP and VS-NLP; and (b) approximate the global
optimal solution of VS-NLP for the case where VS-NLP has a unique global op-
timizer. The derived lower bounds are used to examine the global optimality gap
of the local solutions obtained by Bonmin and Ipopt. Furthermore, in the case
VS-NLP has a unique global optimizer, the approximation for the global opti-
mizer obtained from solving the SDP relaxation can be used as a starting point
for a local optimization method such as IPOPT.

Making the SDP relaxation increases the size of the global optimization prob-
lem, but this size can be reduced substantially if the underlying polynomial op-
timization problem is sparse, i.e. having a small number of variables in each
constraint only, as proposed by Waki et al. (2006). Many real-world water net-
works can be represented by sparse graphs because the degree of most nodes in
the networks is small. The sparsity of a water network results in VS-NLP be-
ing a sparse polynomial optimization problem. In order to exploit this sparsity
and solve the sparse hierarchy of SDP relaxations of Waki et al. (2006), we use
SparsePOP (2012) with SDPA (2012) as the SDP solver.

RESULTS AND DISCUSSION
The methods described above are applied on the ”Pescara” water network,

which is a reduced version of a network for a medium size Italian city. The
network is first mentioned by Bragalli et al. (2011), who also make available
online the model file in Epanet format. Computations were performed running
Red Hat Linux on a blade server with with 100GB (total, 80 GB free) of RAM
and a processor speed of 3.5GHz.

Local solver

The results for applying Bonmin B&B to optimally place 1-4 PRV can be
found in Table 1. In making the model runs, the minimum pressure was set at
pmin = 19m as this was the lowest pressure in the system before placing valves. As
expected, placing additional PRVs reduces the objective value but increases the
computational time. Note the diminishing returns for placing additional valves
in terms of additional pressure reduction.

Optimal locations for 2 new PRVs are shown on the network map (Fig. 1).
This network has several loops and so is a nice illustration of the utility of op-
timization methods for supporting design decisions. It is not obvious from the
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TABLE 1. Computational experience for the valve placement problem on
the Pescara network of Bragalli et al. (2011) having 76 nodes and 99 pipes
(see Fig. 1).

Valves Run Objective Marginal Total
to place Time (s) value Reduction Reduction

0 2 2013
1 25 1867 7.3% 7%
2 623 1764 5.5% 12%
3 1167 1749 0.9% 13%
4 5522 1734 0.9% 14%

FIG. 1. Pescara network due to Bragalli et al. (2011) with two pressure
reducing valves placed in optimal locations as found in the present paper.
Elevation contours shown in the figure are computed from nodal values.

network topology and elevations where valves should be placed. With the optimal
placement of two values, a pressure reduction of 12% is achieved. Assuming that
leakage is directly proportional to pressure (see Lambert (2001)), this pressure
reduction corresponds to approximately a 12% reduction in leakage.

Comparisons between the flow and pressure solution derived by the optimiza-
tion model were compared with those obtained by EPANET for the two valve
case to assess the accuracy of the quadratic approximation. Results showed that
solutions computed using the approximation are consistent with Epanet (Fig. 2).
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FIG. 2. Comparison of pressures (a) and flows (b) for the Pescara network
as calculated by Bonmin with quadratic head loss and EPANET 2.0.

Global solver

The VS-NLP for Pescara network satisfies a correlative sparsity pattern (Waki
et al. 2006) as illustrated in Fig. 3, left. The chordal extension of this pattern
(Fig. 3, right) is exploited by SparsePOP to form a sparse SDP relaxation for
VS-NLP. We consider the VS-NLP for optimally setting the 2 PRVs on pipes ’90’
and ’97’ obtained by Bonmin, and solve the SDP relaxation of order 2, which is
the lowest order relaxation for VS-NLP. Table 2 contains the lower bound given
by the minimum of the SDP relaxation, the IPOPT solution and the relative gap
between the two. Thus, the lower bound obtained from the SDP relaxation for
the global optimum of the VS-NLP provides a performance measure for the local
method described above.

For the zero valve case of VS-NLP, the optimization problem is equivalent to
the network simulation problem of finding the distribution of flows and pressures.
Indeed, the solution obtained by simulation is identical to that obtained from both
local and global optimizaitons. The result that global and local solutions coincide
can be explained by the fact the simulation problem has a unique solution. To
see that the solution to a network simulation problem is unique, Berghout and
Kuczera (1997) argue that a network comprised of links with ’strictly convex
content’ can be posed as a convex optimization problem, a result due to Collins
et al. (1978). Since Pescara lacks non-convex elements, such as pumps, the
feasible flow and pressure solution is unique and may be found by simulation, local
optimization, and global optimization. Where settings for 1 or more PRVs are
required, there are infinitely many feasible solutions. For the scenarios considered
here, the local solver found solutions with relative global optimality gaps of less
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FIG. 3. Correlative sparsity pattern (left) and chordal extension for the
correlative sparsity pattern (right) for VS-NLP.

TABLE 2. Comparison of global and local solutions for the valve setting
problem (VS-NLP) on the Pescara network.

Num. valves Global Global Local
to Lower Run Local Relative Run
Set Bound Time (s) Soln. Gap Time (s)
0 2013 10,974 2013 0.0% 2
1 1744 16,014 1867 7.1% 2
2 1669 15,367 1764 5.7% 3

than 10% in a short time.

CONCLUSION
This paper has applied local and global optimization methods to the problem

of pressure management on water networks. Formulation as a polynomial opti-
mization problem enables solutions using both local and global methods. In the
experiments reported here, the local solutions to the valve setting problem had a
small optimality gap when considering the run time of the global method was at
least three magnitudes larger than the local one.
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Notation
a dimensional coefficient,
b dimensional coefficient,
di water demand at node i,
ei elevation at node i,
hf frictional head loss [m],
vi,j valve indicator,
A− E constants used to compute a and b for Hazen-Williams,
C Hazen-Williams C-value,
D Pipe diameter [m],
L Pipe length [m],
Nn Number of nodes in the network,
Np Number of pipes in the network,
Nv Number of valves in the network,
Q Flow rate [m3/s],
Q1 Flow rate at lower end of approximation interval [m3/s],
Q2 Flow rate at upper end of approximation interval [m3/s],
V Average fluid velocity [m/s],
α Constant part of Hazen-Williams formula
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